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42 [9].-THOMAS R PARKIN & DANIEL SHANKS, Three Tables Concerning the Parity of 
the Partition Numbers p(n) for n < 2040000, Aerospace Corporation, Los Angeles, 
Califomia, 1967, 398 pages of computer output bound in stiff covers and deposited 
in the UMT file. 

Three tables computed for our paper [1] are here deposited in the UMT file. 
Table 1 (238 pages) extends the octal number m/2 of [1, Table 1] to n = 2039999 and 
thereby contains the parity of p(n) to that limit in n. 

Table 2 (56 pages) includes Tables 2 and 4 of [1] and lists the octuple counts 
from 0 to n with 

n = r 10s - 1 

for r = 1(1)9, s = 1(1)4 and r = 1(1)20, s = 5. As described in [1], the k-tuple counts, 
k = 2(1)7, can be determined from these. 

Table 3 (104 pages) concerns the equinumerosity of odd and even p(n). It has 
finer detail than the Table 7 of [1] in that it lists every n = 1000(1000)2040000 to- 
gether with every n where "Odds" = "Evens". It also includes maxlOdds-Evensl in each 
interval here. 

D. S. 
1. THOMAS R. PAR KIN & DANIEL SHANKS, "On the distribution of parity in the partition 

function," Math. Comp., v. 21, 1967, pp. 466-480. 

43 [9].-L. PINZUR, Tables of Dedekind Sums, Department of Math., University of Illi- 
nois, Urbana, Ill., 1975, 527 computer sheets deposited in the UMT file. 

If x is any real number, put 

0, x an integer, 

x - [x] - X, otherwise. 

The ordinary Dedekind sum is defmed for any integer h and arny positive integer k by 

s(h, k) = E, ((n/k))((nh/k)). 
n mod k 

It is easily shown [1] that 
(a) s(qh, qk) = s(h, k), for all positive integers q, 
(b) s(-h, k) = -s(h, k), 
(c) s(h1, k) = s(h2, k), whenever h1 h2 mod k. 

Hence, for a given positive integer k, it is only necessary to compute s(h, k) for those 
h such that 

(1) I S h S k/2, (h, k) = I1. 

The value of s(h, k) is a rational number whose denominator (when in lowest 
terms) divides 6k [1]. The table consists of the integers 6k s(h, k) for k = 3(1)1000. 
The computation was done by repeated use of the following reciprocity relation for the 
Dedekind sums: 

s(h, k) + s(k, h) =.-_ + I- 
h 

+ 
k 

+ h 

This relation and properties (b) and (c) above reduce the given Dedekind sum to 
an expression involving a new Dedekind sum with a smaller second variable. This process 
continues until the second variable equals 1 or 2, at which point it stops since s(h, 1) = 

s(h, 2) = 0 for all positive integers h. For a given integer k, this algorithm takes 
O(log k) steps. 
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The table could have also been computed by storing all previously computed values 
of s(h, k) and then calling on the reciprocity theorem only once, but this would require 
an enormous amount of storage. The program used has the desirable feature that indi- 
vidual values of s(h, k) can be computed for large values of k without construction of 
the entire table up to that point. 

AUTHOR'S SUMMARY 

1. H. RADEMACHER & E. GROSSWALD, Dedekind Sums, Carus Math. Monograph 16, 
Math. Assoc. Amer., 1972. 

EDITORIAL NOTE. The Dedekind sums s(h, k) were previously computed for k = 2(1)100 
and all h satisfying (1) by R. Dale Shipp (J. Res. Nat. Bur. Standards Sect. B, v. 69, 1965, pp. 259 
-263). s(h, k) was given there as the quotient of two relatively prime integers. It is known that 
2k(3, k)s(h, k) is an integer, so that the numerator and denominator of s(h, k) in the present table 
are each divisible by 3 whenever (k, 3) = 1. In fact no attempt is made here to present s(h, k) as 
the quotient of two relatively prime integers. This is not a serious drawback, however, since k is at 
most 1000. 

The table could have been shortened further, since it is known that if hh' 1 mod k, then 
s(h, k) = s(h', k). This would have introduced serious formatting problems, however, since only 
those h such that 1 6 h, h' 6 k/2 would enter into consideration. It would also have introduced 
problems for the user. 

M. N. 


